

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Project:	GASVESSEL
Project No.:	723030
Deliverable No.:	8.1
Deliverable Name:	Documentation providing safeguards solutions
	for the system as identified in the HAZID
	analysis
WP n.	8
Document Version:	No. 2
Document Preparation Date:	2019-06-19
Responsability:	PARTNER No. 13

Type of Deliverable				
R	R Document, Report			
DEM	Demonstrator, pilot, prototype			
DEC	DEC Websites, patent fillings, videos, etc.			
OTHER				
ETHICS	Ethics requirements			
ORDP	Open Research Data Pilot			

	Dissemination Level			
PU	Public	[X]		
СО	Confidential, only for Members of the Consortium (including the EU			
	Commission Services)			

Version Management

Software used		Microsoft Word, Excel			
Company Internal Doc. n.		D.8.1 - Safeguards solutions for the system as identified			
		in the HAZID analysis			
Author(s)		D. Lakhani, S. Niotis			
		D. Nordin, S. Niotis			
Approved by					
Authorized by					
Revision No.	Date	Modification description			
RV 1	2019-06-19	Issued for quality check			
RV 2	2019-06-20	Issued for upload on the EU participant portal			
RV 3					

EC Grant Agreement	No.723030
Project Acronym	GASVESSEL
Project Title	Compressed Natural Gas Transport System
Instrument	HORIZON 2020
Programme	Smart, green and integrated Transport
Start Date of Project	2017-06-01
Duration	48 months
Organisation Name of Lead Contractor for	ABS Hellenic Ltd.
this Deliverable	

Financial/Administrative Coordinator					
Project Coordinator Name	Mr. Loris COK				
Project Coordinator Organization Name	NAVALPROGETTI Srl				
Address	Via dei Papaveri, 21				
	34151 TRIESTE (Italy)				
Phone Numbers	0039 040 212918,				
Email	loris.cok@navalprogetti.net;				
	gasvessel@navalprogetti.net;				
Project web-sites & other Access Points	www.gassvessel.eu				

The GASVESSEL Project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement no. 723030

Contents

Ta	h	ما	Ωf	C_{Ω}	nta	ents

1.	Introduction	4
	1.1 Introduction	4
	1.2 Objectives	4
2.	Design overview	5
	Methodology	
	Scope	
5.	Assumptions	14
6.	Lists of References	14
7.	Workshop Participation details	15
	Results	
Δn	onendix A — HAZID Worksheets	20

List of Figures

Figure 2-1 General Arrangement – Longitudinal view	8
Figure 2-2 General Arrangement – Top view	9
Figure 3-1: The HAZID Study Process	10

List of Tables

Table 3-1 Risk Matrix

Table 3-2 Worksheet Template

Table 4-3 Guidewords

Table 5-1 List of Attendees

Table 8 1 List of Recommendations

Glossary, abbreviations and acronyms

ABL	Above Base Line
ABS	American Bureau of Shipping (Ship Class Society)
CCTV	Closed-Circuit TV surveillance system
CNG	Compressed Natural Gas
DF	Dual Fuel
ESD	Emergency Shutdown
FSU	Floating Storage Unit
HAZID	Hazard Identification
OCIMF	Oil Companies International Marine Forum
W/H	Wheelhouse

1. Introduction

1.1 Introduction

As part of its HORIZON 2020 initiative European Commission formed a consortium to develop a CNG transportation vessel for gas delivery on medium-short leg routes where offshore pipelines or LNG Ships are un-economic or impracticable.

CNG ship will be fitted with pressure cylinders of composite construction of the CNG transportations. The total quantity of the cylinder arranged on board will ensure the capacity (NG @ 300 bar, 20° C) of abt. 15 x 10^{6} Nm³. The Ship is designed to carry natural gas (min. methane number 70) in the compressed gaseous form @ 300 bar and 20° C temperature.

The ship will receive the natural gas previously dehydrated and desulfurized by the production facility or CNG FSU. No provision on board the Ship is provided for preliminary treatments of the natural gas. The production facility or CNG FSU will supply the gas to the ship at abt. 240 bar. The ship is fitted with cargo compressors and relevant systems as necessary to rise the pressure from 240 to 300 bar inside the cylinders to increase the cargo carrying capacity.

Typical ship's machinery, systems and components designed, constructed, supplied and installed to the manufacturer and/or Builder standard in compliance with the requirements of the ABS CNG guide and other regulatory bodies, as applicable. The ship power generation will be performed by four (4) dual fuel engines type Wartsila 8V31DF (4240 kW at 720 RPM each).

To ensure the hazards associated with the operation of vessel is adequately identified and mitigated, a Hazard Identification (HAZID) workshop was conducted from 27th February to 28th February 2019. This document provides the results of the study.

This study was be performed in accordance with the requirements set forth in ABS Guide for Vessels Intended to Carry Compressed Natural Gases in Bulk/Section 2.

1.2 Objectives

The objective of the assessment was to:

- Identify hazards associated with the design and operations of the CNG transportation vessel operation.
- Develop hazard scenarios and identify potential causes, assess the related consequences, and identify the existing protection, detection, and indicating mechanisms.
- Suggesting opportunities of alternative options towards an inherently safer design or identify risk mitigation measures to reduce the estimated risk.

2. Design overview

The Ship is designed to carry natural gas (min. methane number 70) in the compressed gaseous form @ 300 bar and 20° C temperature. The Ship will receive the natural gas previously dehydrated and desulfurized by the production facility or CNG FSU. No provision is provided on board the Ship for systems to perform said preliminary treatments of the natural gas.

Basically, it was assumed that the production facility or CNG FSU will supply the gas to the Ship at abt. 240 bar. The Ship is fitted with cargo compressors and relevant systems as necessary to rise the pressure from 240 to 300 bar inside the cylinders to increase the cargo carrying capacity.

Compressors will also be used during Ship unloading operations as scavenging compressors when the differential pressure between gas in the cargo cylinders and receiving shore net is so low to affect the scheduled discharging time.

The CNG ship is divided as follows:

- **Aft ship**: which includes power generators and propulsive systems
- Mid ship: which consist of an eight (8) cargo holds, each one divided in two sections by one longitudinal bulkhead, designed to contain the CNG pressure cylinders foreseen for the cargo containment. Loading and unloading cargo station is located on the Deck at 28.000 ABL according to OCIMF rules. The loading and unloading operations will be carried out with ship berthed or with single mooring. Double bottom and double sides in way of cargo holds is provided. These spaces to be used for ballast water and to form a complete segregation of cargo.
- Fore ship: which includes accommodation for 30 people and various technical spaces for ship systems and electrical management.

Following section provides brief overview of CNG containment and associated systems. Detailed overview of all ship system is provided in a ship outline specification (Doc# WP5-D5.1-RV0-833-001-A01).

CNG Cargo containment

In the present configuration and size, the Ship is fitted with the following pressure cylinders of composite construction for the CNG transportation:

Cylinder @ 300 bar	Length (m)	External Dia (m)	Quantity (pcs)
Type A	22.5	3.4	256
Туре В	20.5	3.4	12
Type C	18.5	3.4	4

The total quantity of the cylinder arranged on board will ensure the capacity (NG @ 300 bar, 20° C) of abt. 15×10^{6} Nm³. Cylinders are of the composite type 3, with internal stainless-steel liner wrapped with resins and carbon fibers. Cargo cylinders, tested, approved, certified and installed on board the Ship according with Chapter 5 Cargo Containment of the ABS Rules for CNG Vessels and under ABS survey.

Each cargo hold contains a set number of cargo tanks (each tank is comprised of four pressure cylinders interconnected via common header). Cargo holds are inerted with nitrogen at a positive 50 mbar pressure.

CNG Piping systems

Cargo tanks are connected to loading/unloading manifold via cargo deck piping. All the cargo deck piping is routed via a segregated pipe tunnel that runs above the cargo holds dome, in a central position. Cargo pipe tunnel is also inerted with nitrogen. All the CNG piping is butt-welded without flange connection to prevent any leakage during operation.

CNG loading and unloading operation

Gas will be taken on board via the loading facilities and transferred via the deck piping to the cargo containment system. Compressors will be used to increase the gas pressure from the site delivery pressure to the storage pressure cylinders. Once loading is complete, all the remote-controlled stop valves between deck piping and cargo containment systems will be closed in order to segregate the cargo tanks from each other. The deck piping will remain pressurized after loading operation.

Unloading follows the reverse of the above operations. All tanks valves will be opened simultaneously to start the unloading. Once the tank pressure drops below or equalized the destination pressure, flow will be diverted via compressors to deliver the remaining gas in CNG tanks. A residual gas inside of vessels at the end of the unloading is expected to be abt. 30 bar.

The process facilities are not yet designed, but a concept P&ID is shown in Figure 2.

Cargo compressors and Cargo Control Room

Cargo compressor (2x centrifugal compressor type) with relevant auxiliary services and cargo heat exchangers is provided above Deck at 27,500 ABL. Compressor room is designated as a gasdangerous area and built, outfitted and installed in the respect of the relevant rules, including the safety, monitoring and alarm appliances.

Cargo Control Room will be located and arranged as per General Arrangement Plan, outfitted and protected as a gas-safe area. Instrumentation shall be, as far as practicable, of indirect reading system to prevent accidental escape of gas in the atmosphere of the Control Room.

Propulsion System

The ship power generation will be performed by four (4) dual fuel engines type Wartsila 8V31DF (4240 kW at 720 RPM each), installed on Deck at 9 000 ABL.

Four GVU (one for each engine) will be installed in Engine Room for engine gas operation mode.

GVU will be connected to loading/unloading gas cargo manifold. Installation of GVU and associated piping will be in accordance to Chapter 15 Section 1 of ABS Rules for CNG Vessels and ABS Guide for Propulsion Systems for LNG Carriers.

Safety and Supervision System

Emergency Shut-down systems: Two emergency shut-down systems are provided: 1) Ship ESD and 2) Cargo ESD. Ship ESD system will shut down ventilation and fuel systems, while the cargo ESD is dedicated to emergency shutdown of the cargo loading/unloading operations. The cargo ESD system will also interfaced with the loading/unloading terminals ESD systems.

Fire detection system:

Fire Detection Plant, comprising a central panel installed in W/H and a number of addressable detectors and manual call points according to the Rules will be installed. The type of detector will be chosen according to the place of installation. The detectors in hazardous areas will be of certified safe (intrinsically safe) type. A dedicated UPS is provided for fire detection system.

Gas detection system:

Natural gas detection system will be installed. The addressable detectors will be located in cargo area, engine room, cargo compressor room and on the inlets of the ventilation system. The central unit located in W/H will collect all the data from the detectors.

CCTV:

A Closed-Circuit TV surveillance system will be installed. The cameras will cover the cargo manifold zones, cargo compressor room and the engine rooms.

Detail information regarding ESD and gas detection system can be found in ESD system philosophy (doc# WP5-D5.3-RV0-833-7-003-A01) and Gas Detection system philosophy (doc# WP5-D5.3-RV0-833-7-004-A01), respectively.

Figure 2-1 and 2-2 provides the general overview of the CNG system.

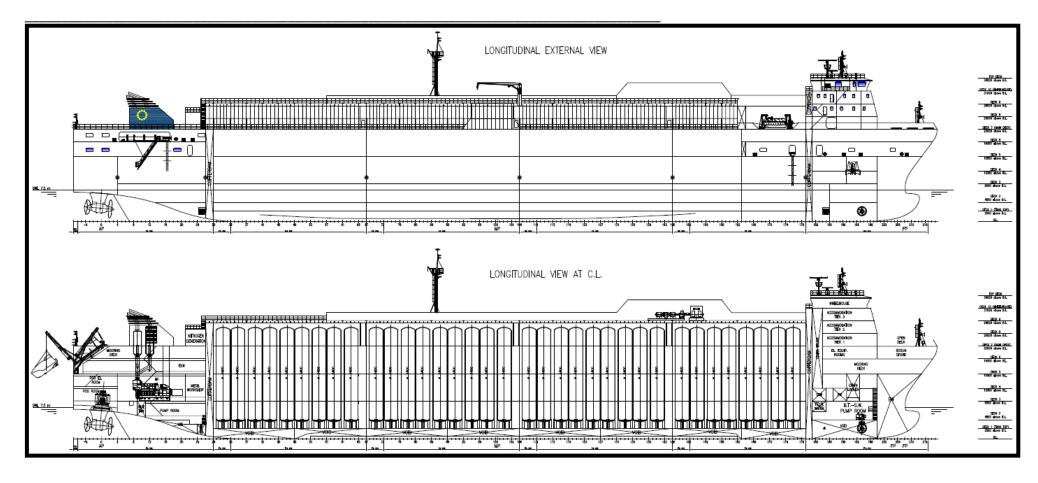


Figure 2-1 General Arrangement - Longitudinal view

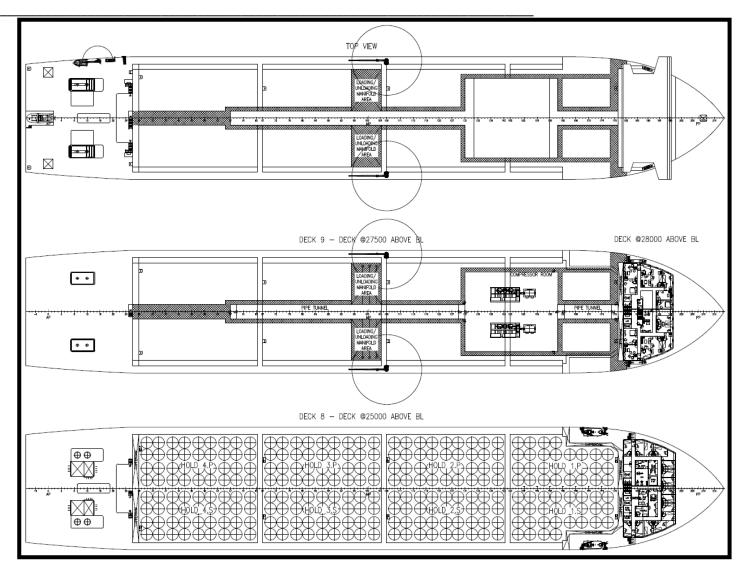


Figure 2-2 General Arrangement – Top view

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

3. Methodology

The Hazard Identification (HAZID) study is a systematic review of the possible causes and consequences of hazardous events. It can be applied to all or part of the vessel or it can be applied to analyse the operational procedures. It can be used for identification and assessment of potential hazards and their causes and consequences

The basic HAZID study involves following tasks:

- The assembly of an appropriate team of experienced personnel, including representatives of all disciplines involved in the area being reviewed and (as needed) interfaces with adjacent systems.
- Completion of the HAZID workshop, the methodology of which is detailed in Figure 2-1

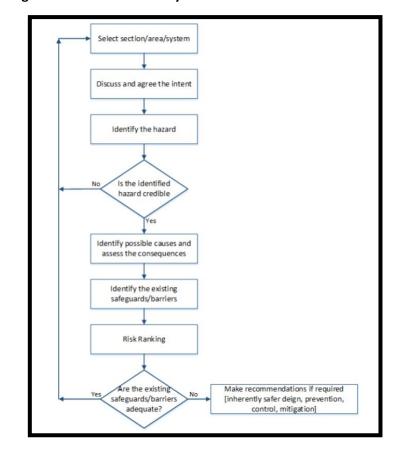


Figure 3-1: The HAZID Study Process

During the HAZID workshop, the following activities will be performed:

- Application of the relevant guidewords to identify hazards and other HSE concerns.
- Use the list of HAZID guidewords provided and if required identify any further guidewords (or Issues of Concern) that require coverage or consideration;
- Brainstorm to identify all potential causes that could result in a "hazard scenario" developing related to that guideword/Issue of concern;

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

• Identify the worst credible consequence associated with realization of the hazard scenario; for this study primary focus will be on scenarios that can lead to safety and environmental consequences.

- Identify the safeguards and controls in place to help to prevent the scenario from starting and those that mitigate the ultimate consequences should it occur;
- Perform a risk ranking for each of the identified scenarios;
- Use the risk ranking to help to assess whether the current controls and safeguards are considered
 adequate, if not then look to identify additional safeguards/controls to help reduce the risk (or identify
 areas where further review or analysis is required to better understand the risk and potential mitigating
 measures) and record these as Actions;
- Repeat for all review areas until complete scope of the HAZID has been studied.
- Risk ranking was performed as per the risk matrix provided in Table 3-1
- HAZID workshop was recorded in the worksheet template as provided in Table 3-2.

Likelihood of Occurrence

Low Low to Med Med to High High

Minor injuries/ Slight 1 2 3 4

Damages Major injuries/ Localized Damages

Single fatality/ Major Major Establish/ Major Batality/ Major Establish/ Major Batality/ Major Establish/ Major Damage Multiple fatalities/ Extensive 4 8 12 16

Table 3-1 Risk Matrix

RISK RATING

Table 3-2 Worksheet Template

Node:								
Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

4. Scope

The physical scope of the HAZID included the design and operations of the vessel, and loading/unloading operations. To perform the thorough review of the design and its associated effect on the vessel operation, the design was divided in to nodes as following:

- 1. Cargo containment system (cylinders)
- 2. Cargo loading and unloading header and fuel gas piping arrangement
- 3. Compressor room and fuel gas system
- 4. Gas combustion unit
- 5. Nitrogen system
- 6. Main engine and engine room
- 7. Ship interface and marine systems

Following operating modes/scenario will be considered for each of the above nodes, where applicable:

- Inerting
- Loading
- Depressurization
- Cool down
- Filling
- Normal operation
- Startup/shutdown
- Dry dock
- Emergency shutdown
- Extended shutdown

Guide words were selected to stimulate discussion within a node and identify hazard scenarios that articulate how the hazard is realized and the potential consequence that might arise. Following list provides the list of general guidewords used during the workshop, but not limited to:

Table 4-1 Guidewords

CNG Carriers - HAZARD IDENTIFICATION - Categories												
NATURAL DISASTERS	EQUIPMENT/INSTRUMENTATION MALFUNCTION	LOSS OF CONTAINMENT/FIRE/EXPLOSION										
Office Code Today		• •										
High winds - Typhoons	Scavenging compressor failure	Leak from CNG pressure cylinders										
Squalls, swells	Safety systems failure	Leak from piping/flange										
Hurricane	Communication failure	Leak from process area										
Tornado	Common cause failures	Leak from loading line										
Extreme wave	PROCESS UPSETS	Leak from turret										
Extreme current	Pressure deviations	Leak from export system										
Tsunami	Temperature deviations	Leak from import system										
Extreme heat	Flow deviations	Leak from fuel gas										

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

High humidity	Level deviations	Leak into ballast tank
Lightning	Corrosion/erosion	Drains
Earthquake	Startup/shutdown	Bunker oil fire
EXTERNAL EFFECTS	Simultaneous operations	Engine room fire
Dropped object	COMPOSITION PROBLEMS	Generator room fire
Marine collision	Moisture	Accommodation fire
Grounding	H2S concentrations	Explosive hazard
Helicopter impact	CO2	
Reduced visibility	UTILITY FAILURES	ENVIRONMENTAL IMPACT
		Flaring/venting during normal
Sabotage/Terrorism	Blackout	operations
Mooring line failure	Cooling Water	Flaring/venting during emergency
Structural failure	Instrument air	CNG leak
Loading line failure	Inert gas/nitrogen	Waste water treatment
CNG Carrier listing	Fire water	Ballast water disposal
Loss of station keeping	HVAC System	Oily water treatment/disposal
Loss of buoyancy	Ballast system	CREW TRANSPORTATION
Fatigue/cracking	Thrusters	Crew boat accident
HUMAN FACTORS	EMERGENCY OPERATIONS	Accident during transfer of personnel
Occupational accidents	Escape/egress/rescue	Helicopter accident
Improper/inadequate		
training	Disconnect during loading	INSPECTION/MAINTENANCE ISSUES
Weather monitoring	Disconnect during unloading	Confined spaces
Shipping traffic		
monitoring	Turning bow against intruder	Machinery instrument accessibility
Material handling	Release from vent	Reduced visibility
Man overboard		
Dynamic situations		Training of inhabitants surrounding
hazards		the plants

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

5. Assumptions

In order for a successful HAZID to be conducted there are some key assumptions that made during the workshop. Those assumptions are noted below:

- Gas detection will be provided in areas where gas may accumulate
- Ventilation fans that may handle gas vapors are to be of the non-sparking type.
- No gas containing piping will be routed through an accommodation or service spaces.
- Vessel is designed and constructed according to all applicable standards and regulations. HAZID scope does not include the review of codes and standard against design in consideration.
- Onshore loading systems and equipment were not part of the HAZID scope

6. Lists of References

The following drawings and documents were made available during the workshop. Below requested document will be made available upon request.

- WP5-D5.1-RV0-833-0-001-A02 Ship technical specification updated;
- WP5-D5.1-RV0-833-0-002-A04 General arrangement updated;
- WP5-D5.1-RV0-833-0-003-A02 Capacity plan;
- WP5-D5.1-RV0-833-0-004-A04 Lines and Body plan;
- WP5-D5.1-RV0-833-0-005-A01 Freeboard calculations;
- WP5-D5.1-RV0-833-0-006-A01 Equipment number calculations;
- WP5-D5.1-RV0-833-0-007-A01 Intact stability calculations;
- WP5-D5.1-RV0-833-0-008-A01 Damage stability calculations;
- WP5-D5.1-RV0-833-0-009-A01 Lightship and CoG;
- WP5-D5.1-RV0-833-0-010-A01 Preliminary resistance and propulsion calculations;
- WP5-D5.1-RV0-833-0-011-A01 International tonnage calculations;
- WP5-D5.1-RV0-833-0-012-A01 Escape route plan;
- WP5-D5.1-RV0-833-0-013-A01 Hazardous areas and gas dangerous spaces plan:
- WP5-D5.2-RV0-833-0-017-A01 Model tests input data;
- WP5-D5.1-RV0-833-2-001-A01 Bilge keels schematic layout;
- WP5-D5.1-RV0-833-1-001-A01 Midship section;
- WP5-D5.3-RV0-833-3-004-A01 Lifesaving appliances plan;
- WP5-D5.3-RV0-833-5-001-A01 Structural fire protection plan insulation plans;
- WP5-D5.3-RV0-833-5-002-A01 Thermal insulation scheme of cargo area;
- WP5-D5.3-RV0-833-5-003-A01 HVAC Schematic layout;
- WP5-D5.3-RV0-833-5-004-A01 AHU Systems pressure drop calculation;
- WP5-D5.3-RV0-833-5-005-A01 HVAC System fwd frame 179 P&ID;
- WP5-D5.3-RV0-833-5-006-A01 HVAC System fwd frame 179 Report;
- WP5-D5.3-RV0-833-5-007-A01 HVAC System between frame 28 and frame 179 P&ID;
- WP5-D5.3-RV0-833-5-008-A01 HVAC System between frame 28 and frame 179 Report;
- WP5-D5.3-RV0-833-5-009-A01 HVAC System aft frame 28 P&ID;
- WP5-D5.3-RV0-833-5-010-A01 HVAC System aft frame 28 Report;
- WP5-D5.3-RV0-833-6-001-A01 Active fire protection systems and deck washing philosophy;

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

- WP5-D5.1-RV0-833-7-001-A01 Preliminary electric balance;
- WP5-D5.1-RV0-833-7-002-A01 Electric distribution one-line diagram;
- WP5-D5.3-RV0-833-7-010-A01 Emergency shutdown system philosophy;
- WP5-D5.3-RV0-833-7-013-A01 Gas detection system philosophy.

7. Workshop Participation details

The HAZID workshop was conducted from 27th February through 28th February 2019 in Trieste Italy at ESTECO SpA premises.

HAZID workshop team included participant from various discipline. This team included personnel from Navalprogetti S.r.I., ESTECO, Cenergy, and ABS, who were familiar with the intended design, operation, and maintenance of the system. In addition, the team included personnel from ABS AS, an engineering firm that specializes in process safety and reliability analysis. Per our agreement, ABS AS provided the risk engineer to facilitate the meetings, document the HAZID analysis, and provide knowledge of the hazard evaluation techniques used. The team members who performed this HAZID review are listed in Table 5-1

Table 5-1 List of Attendees

Name	Title	Company	
Loris Cok	President	Navalprogetti Srl	
Spartaco Angelini	Project Manager	Navalprogetti Srl	
Oscar Perosa	Naval Architect	Navalprogetti Srl	
Silvia Dorigo	Naval Architect	Navalprogetti Srl	
Stavros Niotis	Pincipal Engineer	ABS Global Gas Solutions	
Darshan Lakhani	Facilitator/Engineering Manager, Risk and	ABS Advanced Solution	
	Integrity		
Alberto Clarich	Head of Engineering Services and Support	Esteco SpA	
Rosario Russo	Engineering Services & Support	Esteco SpA	
Luca Battaglia	Engineering Services & Support	Esteco SpA	
Giovanni Fratti	CEO	CNGV	
Michele Capobianco	Managing Director	Cenergy	
Tancredi Chinese	Project Engineer	Cenergy	
Rodolfo Taccani	Partner	Cenergy	

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

8. Results

Based on the review and insight gained from performing this HAZID analysis, the HAZID team made 27 recommendations as listed in Table 8-1. The table also includes reference(s) to the HAZID worksheet provided in Appendix A, where the recommendation was developed, and where a complete description of the scenario can be found. A system shall be established to address the HAZID analysis team's recommendations and ensure that the recommendations are incorporated into the design or otherwise resolved early in the next design phase. This table is the basis for the Hazard Register. It is anticipated that additional hazards may be identified as more details are available during further development of the project phases and accordingly this register should be kept up to date, with items closed out and added, as appropriate.

Table 8-1 List of Recommendations

No.	Recommendations	Place(s) Used
1.	Review ship structural protection against the brittle fracture	Consequences:
	from low temperature exposure during manifold area leak. Low	2.1.1.1
	temperature exposure can lead to long term damage to steel	
	due to brittle fracture. CNG temperature is not expected to be	
	low enough to cause an immediate brittle fracture of structural	
	steel.	
2.	Consider use of quick connect/disconnect coupling for hose	Consequences:
	connection. Inability to isolate the flow during emergency or	2.1.1.1
	leakage scenario can lead to escalation of event.	
3.	Define flexible hose management and accordingly evaluate	Consequences:
	venting arrangements of flexible line during emergency scenario	2.1.1.1
	to minimize loss of containment.	
4.	Review need for relief valve for the loading manifold. During	Consequences:
	the workshop team raised a concerned that upstream process	2.2.1.1
	upsets can lead to overpressure of manifold piping resulting in	
	loss of containment and fire hazard.	
5.	Review class requirement for helicopter operations for	Consequences:
	emergency evacuation of personnel and provide adequate	2.17.1.1
	safeguards to avoid any helicopter accident during evacuation.	
6.	Review hose connection design to ensure ship movement	Consequences:
	stresses are accounted in the connection design to avoid	2.28.1.1
	damage to hose connection during ship movement. Hose	
	connection damage can lead to loss of containment and fire	
	hazard during loading/unloading	

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Place(s) Used No. Recommendations 7. Ensure operating manual considers loading and unloading as a Consequences: 2.29.1.1, 2.31.1.1, special operation and provides adequate operational safeguards as applicable considering 1) station keeping, 2) fatigue 3) 2.33.1.1, 2.35.1.1 operator training and 4) ship traffic during loading to prevent hose damage. Hose damage can lead to loss of containment and fire hazard during loading/unloading. Perform study to analyse low temperature exposure to hold 8. Consequences: area and pressure profile within cargo hold during cylinder 1.1.1.3 leakage scenario and provide adequate safeguards accordingly. 9. Review gas combustion unit operating philosophy/capacity in Consequences: regard to 1) release via cylinder rupture disk 2) release via cargo 1.1.1.1 hold rupture disk 3) control venting from leaking cylinders via GCU gas inlet header to ensure GCU is sized adequately to handle anticipated flow rate. 10. Confirm use of rupture disk in lieu of relief valves and routing to Consequences: GCU instead to vent mast in terms of Class requirement. 1.1.1.1 Review cylinder design against external conditions (e.g. extreme 11. Consequences: weather conditions) in accordance with class requirements and 1.18.1.1 provide adequate safeguards as applicable. 12. Review structural design in terms of class grounding Consequences: requirement and provide adequate safeguards as applicable. 1.26.1.1 13. Define survey plan requirements for tanks considering the tank Consequences: internals/surface and external coating to ensure survey can be 1.30.1.1 performed adequately to identify any fatigue defects occurred during ship operation. 14. Review if gas detection system is required for bilge system. Consequences: Cargo hold are connected to pump room via bilge system and 1.45.1.1 team raised a concerned that during gas leak in cargo hold there is a potential for gas migration to pump room leading to fire hazard in pump room. 15. Review tank inlet valve arrangement to ensure adequate Consequences: arrangement is provide for isolation of individual cargo tank 2.1.1.1 during emergency scenario. 16. Review if valve (#32) across remotely controlled valve can be Consequences: removed. Removal of valve will improve operability of CNG 2.1.1.1 loading and unloading operation.

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

No.	Recommendations	Place(s) Used
17.	Review rupture disc location to ensure it is in compliance with	Consequences:
	class requirement. Currently rupture disc is routed to gas	2.1.1.1
	combustion unit which may pose a restriction in rupture disc	
	relief path and lead to ineffective pressure relief during	
	overpressure scenario.	
18.	Review if remotely controlled valve (VM2) can be used as an	Consequences:
	emergency shutdown valve. Concerned was raised during the	2.1.1.1
	workshop that remotely controlled valve is currently planned to	
	regulate the flow to cargo tank during loading and unloading	
	operation and may not be able to meet requirements for	
	emergency shutdown valve.	
19.	Review if manual valve (#V36) at cargo tank inlet can be moved	Consequences:
	in to pipe tunnel. Currently subject valve is located in the cargo	2.1.1.1
	hold area and will required entrance into cargo hold area for	
	valve maintenance or to operate the valve. as per the class	
	requirement this valve is supposed to as close as possible to	
	tank. Team wanted to confirm if the design will be able to meet	
	class requirements with valve being moved to pipe tunnel for	
	improved operability efficiency.	
20.	Review need to perform and fire explosion analysis to	Consequences:
	understand effect on the adjacent area in case of a gas leak in	3.1.1.1, 3.14.1.1
	compressor room and provide adequate safeguards as	
24	applicable.	C
21.	Review emergency shutdown philosophy for the ship in regard	Consequences:
22	to IGC and IGF code and update as required.	3.4.1.1, 3.5.1.1
22.	Review compressor inlet separator drain arrangement and ensure it is routed to safe location. If drain valve is left open	Consequences:
		3.6.1.1
	inadvertently it can lead to gas blow-by resulting in a fire/explosion.	
23.	Perform gas dispersion analysis to optimized vent mast location	Consequences:
23.	and height to ensure gas release from vent mast will not lead to	3.17.1.1
	migration of gas to hazardous zone or accommodation area	3.17.1.1
	which can result in a fire hazard.	
24.	Consider providing multiple N2 header such that single failure in	Consequences:
Z4.	the line cannot lead to complete loss of N2 supply to cargo	5.1.1.1
	holds. Loss of inert atmosphere in a cargo hold can lead to	J.1.1.1
	potential fire hazard if ignition source is present during leak.	
	Potential file hazara ii igintion source is present during leak.	

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

No.	Recommendations	Place(s) Used
25.	Review nitrogen system arrangement for purging operation to	Consequences:
	ensure cylinders can be effectively and safely made gas free for	5.7.1.1
	maintenance purpose. Currently only one inlet port is shown	
	for CNG cylinders and it will be difficult to inert the cylinder	
	completely if separate outlet port is not provided. Ineffective	
	purging can lead to fire hazard.	
26.	Consider making life raft area open to avoid any gas pockets	Consequences:
	during gas release scenario. Gas accumulation in life raft can	7.1.1.1
	lead to fire hazard and inaccessibility to life raft during	
	evacuation.	
27.	Consider increasing cofferdam till wheel house to protect wheel	Consequences:
	house from fire incident in compressor room. Also, ensure	7.1.1.1
	cofferdam height increase till wheel house is in compliance with	
	class requirement for visibility from wheel house.	

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Appendix A – HAZID Worksheets

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 1. Cargo containment system (cylinders)

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
Leak from CNG pressure cylinders	1. Mechanical damage; material quality; corrosion; fatigue; vibration; defective welds; process upsets	within the hold if ignition source present;	normal operation in port and at sea are inserted with nitrogen	AST	3	1	3	 Review gas combustion unit operating philosophy/capacity in regard to release via cylinder rupture disk release via cargo hold rupture disk control venting from leaking cylinders via GCU gas inlet header ensure GCU is sized adequately to handle anticipated flow rate.

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 1. Cargo containment system (cylinders)

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations	
			Pressure monitoring of cargo tank (group of four cylinders)	PER	2	1	2	10. Confirm use of rupture disk in lieu of relief valves and routing to GCU instead to vent	
			3. Ability to isolate individual cargo tank via remotely operated valve						mast in terms of Class requirement.
			4. Cargo tanks and piping is provided with overpressure protection as applicable						
			5. Ability to isolate individual cargo tank						
			6. Cargo hold pressure monitoring						
			7. Ability to divert gas to gas combustion unit						
			8. Cargo hold is provided with thief hatch for protection against overpressure						

ABS Hellenic Ltd. WP No. 8 Deliverable No. 8.1

o. 8.1 Page | 22

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 1. Cargo containment system (cylinders)

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
			9. A60 bulkhead provided where applicable and required					
			10. Insulations of cargo holds side walls and ceiling will be fireproof					
			11. Active fire protection					
			12. Gas detectors within the hold area with alarm and emergency shutdown					
			13. Oxygen detectors provided in cargo hold with alarm					
			14. Ability to vent cylinders via vent mast, if required					
			15. Cylinder material is protected against the corrosion					

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 1. Cargo containment system (cylinders)

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
			16. Cylinders are of the composite type 3, with internal stainless-steel liner wrapped with resins and carbon fibers.					
			17. Cargo cylinders, tested, approved, certified and installed on board the Ship according with Chapter 5 Cargo Containment of the ABS Rules for CNG Vessels and under ABS survey.					
			18. Hazardous area classification19. QA/QC during fabrication	-				
		2. Potential for jet fire within the hold, damage to adjacent cylinders;	normal operation in port	AST	3	1	3	

Page | 25

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 1. Cargo containment system (cylinders)

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
		overpressure; loss of containment; fire hazard if ignition source present; ship	Pressure monitoring of cargo tank (group of four cylinders)	PER	2	1	2	
		structure damage	3. Ability to isolate individual cargo tank via remotely operated valve					
			4. Cargo tanks and piping is provided with overpressure protection as applicable					
			5. Ability to isolate individual cargo tank					
			6. Cargo hold pressure monitoring					
			7. Ability to divert gas to gas combustion unit					
			8. Cargo hold is provided with thief hatch for protection against overpressure					

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 1. Cargo containment system (cylinders)

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
			9. A60 bulkhead provided where applicable and required					
			10. Insulations of cargo holds side walls and ceiling will be fireproof					
			11. Active fire protection provided as per class requirements					
			12. Gas detectors within the hold area with alarm and emergency shutdown					
			13. Oxygen detectors provided in cargo hold with alarm					
			14. Ability to vent cylinders via vent mast, if required					

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 1. Cargo containment system (cylinders)

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
			15. Cylinder material is protected against the corrosion					
			16. Cylinders are of the composite type 3, with internal stainless-steel liner wrapped with resins and carbon fibers.					
			17. Cargo cylinders, tested, approved, certified and installed on board the Ship according with Chapter 5 Cargo Containment of the ABS Rules for CNG Vessels and under ABS survey.					
			18. Hazardous area classification19. QA/QC during fabrication					

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 1. Cargo containment system (cylinders)

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
		3. Low temperature exposure (~ -60 C) of ship structure; asset	bottom	AST	3	1	3	8. Perform study to analyze low temperature exposure to hold area
			Cargo hold sides are covered with cryogenic coating					and pressure profile within cargo hold during cylinder leakage scenario and provide adequate safeguards accordingly.
2. Leak from piping/flange	Mechanical damage	Potential explosive atmosphere in cargo hold	' '	AST	Г 3	1	3	
		Pressure monitoring of cargo tank (group of four cylinders)						
			Cargo tanks and piping is provided with overpressure protection as applicable					
			Ability to isolate individual cargo tank					

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 1. Cargo containment system (cylinders)

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
			5. Cargo hold pressure monitoring					
			6. Ability to divert gas to gas combustion unit					
			7. Cargo hold is provided with thief hatch for protection against overpressure					
			8. A60 bulkhead provided where applicable					
			9. Fully insulated piping					
			10. Insulations of cargo holds side walls and ceiling will be fireproof					
			11. Active fire protection provided as per class requirements					

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 1. Cargo containment system (cylinders)

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
			12. Gas detectors within the hold area with alarm and emergency shutdown					
			13. Oxygen detectors provided in cargo hold with alarm					
			14. Ability to vent cylinders via vent mast, if required					
			15. Hazardous area classification					
			16. All the CNG pipes are butt- welded without flange connections.					
			17. Piping systems common to multiple cargo holds arranged so that release of gas from one hold space shall not leak into other hold spaces.					

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 1. Cargo containment system (cylinders)

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
			18. Structure and supports suitably shielded from piping system leakage.					
			19. QA/QC during fabrication					
		2. Potential explosive atmosphere in pipe tunnel	Design considered thermal expansion issue that can lead to piping damage	AST	3	1	3	
			All cargo hold piping is of butt-welded connection type	PER	2	1	2	
			3. Gas detectors in pipe tunnel					
			Oxygen detectors provided as applicable					
			5. Pipe tunnel is provided with burst disk with routing to GCU					

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 1. Cargo containment system (cylinders)

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
			6. Design considered thermal expansion issue that can lead to piping damage7. All the CNG pipes are buttwelded without flange connections.8. QA/QC during fabrication					
3. Pressure deviations	No additional hazards identified							
4. Temperature deviations	1. Use of compressor	1. Increase of the gas temperature leading to high heat dissipation from cylinder into cargo hold (approx. 30 kw/cylinder). No issues of concern identified						

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 1. Cargo containment system (cylinders)

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
5. Flow deviations	No additional hazards identified							
6. Level deviations	No additional hazards identified							
7. Corrosion/erosion	No additional hazards identified							
8. Startup/shutdown	1. Extended shutdown	Potential high pressure due to high atmospheric temperature; not expected to lead to any damage to tanks	cool down cylinder temperature 2. Ability to use refrigerator	AST	1	1	1	
9. Simultaneous operations	No additional hazards identified							

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 1. Cargo containment system (cylinders)

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
10. Moisture	Condensation on cylinder surface due to temperature difference between cylinder content and cargo hold temperature	identified	 Cargo hold is provided with drain Dry inert gas 					
11. H2S concentrations	1. off spec gas	equipment and H2S exposure hazards	 H2S is not expected in inlet stream Gas will be tested before loading Ship will not receive gas if H2S is present in the inlet stream 	PER	3	1	3	
12. CO ₂	1. Not applicable							
13. Drains	No additional hazards identified							

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 1. Cargo containment system (cylinders)

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
14. Explosive hazard	No additional hazards identified							
15. Flaring/venting during normal operations	No additional hazards identified							
16. Flaring/venting during emergency	No additional hazards identified							
17. CNG leak	No additional hazards identified							
18. High winds - Typhoons	1. extreme weather	1. Cylinder damage	Cylinder foundation and supports, fastening devices and piping connections are designed based on worst case weather condition	AST	3	1	3	11. Review cylinder design against external conditions (e.g. extreme weather conditions) in accordance with class requirements and provide adequate safeguards as applicable.

ABS Hellenic Ltd. WP No. 8

Deliverable No. 8.1

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 1. Cargo containment system (cylinders)

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
19. Confined spaces	1. Confines space entry	Asphyxiation hazards	Entry into cargo hold area is a controlled activity	PER	3	1	3	
			2. buddy system					
			3. Training					
20. Machinery instrument accessibility	No issues of concern identified							
21. Reduced visibility	1. Ineffective lighting	1. Operational issues	Adequate explosion proof lighting (normal and emergency) is provided for cargo hold area					
22. High humidity	No additional hazards identified							
23. Lightning strike	No issue of concern identified							
24. Dropped object	1. Lifting activities		1. Cargo hold is covered on top	AST	3	1	3	

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 1. Cargo containment system (cylinders)

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
		Dropped object; cylinder damage; asset damage	No lifting is performed over the cargo hold area					
25. Marine collision	1. Ship collision	1. potential damage to tank	Collision study indicates that cylinder will not be damaged during worst cast collision scenario (10000 tons at 5 knots)	AST	4	1	4	
			Voyage planning to avoid any collision risk	PER	4	1	4	
			Hull structures designed to avoid penetration to cargo holds					
			4. Radio and navigation aids as per SOLAS requirements					
26. Grounding	1. Ship grounding	Potential damage to cylinders	1. Double bottom	AST	4	1	4	12. Review structural design in terms of class grounding requirement and provide adequate

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 1. Cargo containment system (cylinders)

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
								safeguards as applicable.
27. CNG Carrier listing	No additional hazards identified							
28. Loss of station keeping	No issues of concern identified							
29. Loss of buoyancy	1. Cargo hold flooding	In securement of cylinder leading to potential damage; asset damage	Cylinder fastening arrangement that prevents cylinder becoming buoyant	AST	3	1	3	
30. Fatigue/cracking	1. Operational cycles	1. Potential cylinder damage	 Fatigue test will be performed for cylinders Regular maintenance and inspection Cylinder is designed based on expected fatigue loads 	AST	3	1	3	13. Define survey plan requirements for tanks considering the tank internals/surface and external coating to ensure survey can be performed adequately to identify any fatigue defects occurred during ship operation.

ABS Hellenic Ltd. WP No. 8

Deliverable No. 8.1

Page | 38

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 1. Cargo containment system (cylinders)

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
31. Occupational accidents	1. Confines space entry	1. Asphyxiation hazards	 Entry into cargo hold area is a controlled activity Buddy system Training 	PER	4	1	4	
32. Improper/inadequa te training	1.	1.	Crew will be provided with appropriate training for CNG operations					
33. Shipping traffic monitoring	No additional hazards identified							
34. Material handling	No issues of concern identified	1.	Lifting within cargo hold be a controlled activity					
35. Man overboard	No issues of concern identified	1.						
36. Dynamic situations hazards	No issues of concern identified	1.						
37. Blackout	No issues of concern identified	1.						

ABS Hellenic Ltd. WP No. 8

Deliverable No. 8.1

Page | 39

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 1. Cargo containment system (cylinders)

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
38. Cooling Water	No issues of concern identified	1.						
39. Instrument air	No issues of concern identified	1.						
40. Inert gas/nitrogen	1. Loss of N2	1. Loss of inert	1. Two N2 generators (2x95%)	AST	3	1	3	
		atmosphere in cargo hold, potential for explosive atmosphere during leak scenario; fire hazard if ignition source present	2. Oxygen sensor in cargo hold with alarm	PER	3	1	3	
41. Fire water	No issues of concern identified	1.	Active fire water system is provided					
			Cargo hold is provided with drains					
42. HVAC System	No issues of concern identified	1.						

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 1. Cargo containment system (cylinders)

	Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
43.	Escape/egress/resc ue	1. Emergency situation	Personnel injury if escape routes not available	Two means of escape routes provided from each cargo hold	PER	3	1	3	
44.	Release from vent	1.	1.	cylinders are provided with venting capability					
45.	Bilge system	Bilge pump room is connected with cargo	Potential ingress of gas in to pump room		AST	3	1	3	14. Review if gas detection system is required for
		hold via bilge system	via bilge system; fire hazard		PER	3	1	3	bilge system. Cargo hold are connected to pump room via bilge system and team raised a concerned that during gas leak in cargo hold there is a potential for gas migration to pump room leading to fire hazard in pump room.

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 2. Cargo loading and unloading header and fuel gas piping arrangement

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
1. Leak from piping/flange	1. Mechanical damage, extreme weather, process upsets, dropped object; material quality; corrosion; fatigue; vibration; defective welds	1. Potential leak at manifold; potential fire hazard; structural damage	Emergency shutdown valve at loading manifold	AST	3	1	3	1. Review ship structural protection against the brittle fracture from low temperature exposure during manifold area leak. Low temperature exposure can lead to long term damage to steel due to brittle fracture. CNG temperature is not expected to be low enough to cause an immediate brittle fracture of structural steel.
			2. Gas detectors provide in manifold area	PER	3	1	3	2. Consider use of quick connect/disconnect coupling for hose connection. Inability to isolate the flow during emergency or leakage

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 2. Cargo loading and unloading header and fuel gas piping arrangement

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
								scenario can lead to escalation of event.
			3. Visual monitoring of manifold and piping area via CCTV					3. Define flexible hose management and accordingly evaluate venting arrangements of flexible line during emergency scenario to minimize loss of containment.
			4. Escape routes					15. Review tank inlet valve arrangement to ensure adequate arrangement is provide for isolation of individual cargo tank during emergency scenario.
			5. Active fire protection					16. Review if valve (#32) across remotely controlled valve can be removed. Removal of

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 2. Cargo loading and unloading header and fuel gas piping arrangement

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
								valve will improve operability of CNG loading and unloading operation.
			6. Welded connections, where applicable				17	Review rupture disc location to ensure it is in compliance with class requirement. Currently rupture disc is routed to gas combustion unit which may pose a restriction in rupture disc relief path and lead to ineffective pressure relief during overpressure scenario.
			7. Weather monitoring				18	controlled valve (VM2) can be used as an emergency shutdown valve. Concerned was raised during the

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 2. Cargo loading and unloading header and fuel gas piping arrangement

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
								workshop that remotely controlled valve is currently planned to regulate the flow to cargo tank during loading and unloading operation and may not be able to meet requirements for emergency shutdown
			8. Emergency interface protocol will be defined between terminal and ship to isolate flow during emergency situations 9. Cargo tanks and piping is					valve. 19. Review if manual valve (#V36) at cargo tank inlet can be moved in to pipe tunnel. Currently subject valve is located in the cargo hold area
			provided with overpressure protection as applicable 10. Ability to divert gas to gas combustion unit					and will required entrance into cargo hold area for valve maintenance or to operate the valve. as per the class

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 2. Cargo loading and unloading header and fuel gas piping arrangement

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
			 11. Hazardous area classification 12. QA/QC during fabrication 13. All the CNG pipes are buttwelded without flange connections. 14. Structure and supports suitably shielded from piping system leakage. 					requirement this valve is supposed to as close as possible to tank. Team wanted to confirm if the design will be able to meet class requirements with valve being moved to pipe tunnel for improved operability efficiency.
2. Pressure deviations	Upstream process upsets	Potential piping damage; loss of containment; fire hazard	1. Pressure monitoring at manifold 2. Emergency interface protocol will be defined between terminal and ship to isolate flow during emergency situations	PER	3	1	3	4. Review need for relief valve for the loading manifold. During the workshop team raised a concerned that upstream process upsets can lead to overpressure of manifold piping resulting in loss of containment and fire hazard.

Page | 47

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 2. Cargo loading and unloading header and fuel gas piping arrangement

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
3. Temperature deviations	Upstream process upsets	Potential piping damage; loss of containment; fire	Low temperature monitoring	AST	3	1	3	
		hazard	 Heat tracing Onshore temperature monitoring Piping material is compatible with low/high 	PER	3	1	3	
4. Flow deviations	No issue of concern identified		temperature operation					
5. Corrosion/erosion	No issue of concern identified							
6. Startup/shutdown	No issue of concern identified							
7. Simultaneous operations	No issue of concern identified							

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 2. Cargo loading and unloading header and fuel gas piping arrangement

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
8. Moisture	1. Out of spec gas	No issue of concern identified for manifold piping						
9. H2S concentrations	1. off spec gas	Potential damage to equipment and H2S exposure hazards	H2S is not expected in inlet stream	AST	3	1	3	
			Ship will not receive gas if H2S is present in the inlet stream	PER	3	1	3	
			3. Gas will be tested before loading					
10. CO2	No issue of concern identified							
11. Drains	1. Not applicable							
12. Explosive/jet fire hazard	1. Leak	Potential obstruction of escape routes; personnel	Multiple escape routes provided	PER	4	1	4	

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 2. Cargo loading and unloading header and fuel gas piping arrangement

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
		injury/fatality during emergency scenario						
13. Flaring/venting during normal operations	No additional hazards identified							
14. Flaring/venting during emergency	No additional hazards identified							
15. Crew boat accident	1. Pilot error	Potential collision with loading hose	Crew boat will be embark away from the loading	AST	3	1	3	
		during transfer; potential fire hazard	manifold area to avoid any contact with loading hose	PER	3	1	3	
16. Accident during transfer of personnel	No additional hazards identified							
17. Helicopter accident	1. Emergency evacuation	Potential damage to cargo area; loss of containment; fire hazard; asset damage		PER	4	1	4	 Review class requirement for helicopter operations for emergency evacuation of personnel and provide adequate safeguards to avoid any

ABS Hellenic Ltd. WP No. 8

Deliverable No. 8.1

Page | 49

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 2. Cargo loading and unloading header and fuel gas piping arrangement

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
								helicopter accident during evacuation.
18. Confined spaces	No confined space in manifold area							
19. Machinery instrument accessibility	No issues of concern identified							
20. Reduced visibility	Manifold area is equipped with CCTVs and have a direct line of visibility from wings							
21. Lightning	1. Adverse weather		1. Ship is provided with	AST	2	1	2	
		of fire events or fire hazard	protection	equate lightning	2			
22. Marine collision	No issues of concern identified							

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 2. Cargo loading and unloading header and fuel gas piping arrangement

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
23. Grounding	1. Static electricity	1. Fire hazards	Grounding is provided, as applicable	PER	3	1	3	
24. Reduced visibility	Obstruction of view from wheel house	1. Operational issues	Manifold area is equipped with CCTVs and have a direct line of visibility from wings					
25. Mooring line failure	1. No additional hazards identified							
26. Structural failure	No additional hazards identified							
27. Loading line failure	No additional hazards identified							
28. CNG Carrier listing	1. Listing	Potential damage to hose connections; potential fire hazards	1. Loading is unmanned operation	PER	3	1	3	6. Review hose connection design to ensure ship movement stresses are accounted in the connection design to avoid damage to hose connection during ship

ABS Hellenic Ltd. WP No. 8

Deliverable No. 8.1

Page | 51

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 2. Cargo loading and unloading header and fuel gas piping arrangement

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
								movement. Hose connection damage can lead to loss of containment and fire hazard during loading/unloading.
29. Loss of station keeping	1. Operator/pilot error	Potential damage to hose connections; potential fire hazards	1. Operation manual	PER	3	1	3	7. Ensure operating manual considers loading and unloading as a special operation and provides adequate operational safeguards as applicable considering 1) station keeping, 2) fatigue 3) operator training and 4) ship traffic during loading to prevent hose damage. Hose damage can lead to loss of containment and fire hazard during loading/unloading.

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 2. Cargo loading and unloading header and fuel gas piping arrangement

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
30. Loss of buoyancy	No issues of concern identified							
31. Fatigue/cracking	1. Hose operation	1. Potential damage to hose; potential leak;	Regular maintenance and inspection	AST	2	1	2	7. Ensure operating manual considers loading and
		fire hazards	Inspection	PER	3	1	3	unloading as a special operation and provides adequate operational safeguards as applicable considering 1) station keeping, 2) fatigue 3) operator training and 4) ship traffic during loading to prevent hose damage. Hose damage can lead to loss of containment and fire hazard during loading/unloading.
32. Occupational accidents	No issues of concern identified							

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 2. Cargo loading and unloading header and fuel gas piping arrangement

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
33. Improper/inadequa te training	1. Operator error	1. Hose damage; loss of containment; fire hazard; exposure of personnel to CNG; personnel fatality/injury	Adequate training will be provided to personnel for loading and unloading operation	PER	3	1	3	7. Ensure operating manual considers loading and unloading as a special operation and provides adequate operational safeguards as applicable considering 1) station keeping, 2) fatigue 3) operator training and 4) ship traffic during loading to prevent hose damage. Hose damage can lead to loss of containment and fire hazard during loading/unloading.
34. Weather monitoring	No additional hazards identified							
35. Shipping traffic monitoring	Ship traffic around loading area	Potential collision leading to loading	1. Voyage planning	AST	3	1	3	7. Ensure operating manual considers loading and
	.ouamig area	operation interruption or damage; loss of		PER	3	1	3	unloading as a special operation and provides adequate operational

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 2. Cargo loading and unloading header and fuel gas piping arrangement

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
		containment; fire hazards						safeguards as applicable considering 1) station keeping, 2) fatigue 3) operator training and 4) ship traffic during loading to prevent hose damage. Hose damage can lead to loss of containment and fire hazard during loading/unloading.
36. Material handling	Crane operation; dropped object	Potential damage to piping; fire hazard	No crane operations will be performed during the	PER	3	1	3	
	diopped object	pipilig, ilic liazara	loading/unloading operations	AST	3	1	3	
37. Man overboard	No issues of concern identified							
38. Dynamic situations hazards	No additional hazards identified							

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 2. Cargo loading and unloading header and fuel gas piping arrangement

Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
No issues of concern identified	1.	Communication system is provided as per the rules and industry practices					
No issues of concern identified	1.	Communication system is provided as per the rules and industry practices					
No issues of concern identified	1.						
1. Not applicable							
1. Not applicable							
No additional hazards identified							
No additional hazards identified							
1. NA							
No additional hazards identified							
	 No issues of concern identified No issues of concern identified No issues of concern identified Not applicable Not applicable No additional hazards identified No additional hazards identified No additional hazards identified No additional hazards identified 	1. No issues of concern identified 1. No issues of concern identified 1. No issues of concern identified 1. Not applicable 1. Not applicable 1. No additional hazards identified 1. No additional hazards identified 1. No additional hazards identified 1. No additional hazards identified	1. No issues of concern identified 1. Not applicable 1. Not applicable 1. No additional hazards identified 1. No additional hazards	1. No issues of concern identified 1. Not applicable 1. Not applicable 1. No additional hazards identified 1. No additional hazards identified	1. No issues of concern identified 1. No applicable 1. No additional hazards identified 1. No additional hazards identified	1. No issues of concern identified 1. Not applicable 1. Not applicable 1. No additional hazards identified 1. No additional hazards identified	1. No issues of concern identified 1. Communication system is provided as per the rules and industry practices 1. No issues of concern identified 1. No issues of concern identified 1. No issues of concern identified 1. No applicable 1. No applicable 1. No additional hazards identified 1. No additional hazards

ABS Hellenic Ltd. WP No. 8

Deliverable No. 8.1

Page | 56

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 2. Cargo loading and unloading header and fuel gas piping arrangement

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
48. Disconnect during loading	No additional hazards identified							
49. Disconnect during unloading	No additional hazards identified							
50. Release from vent	No additional hazards identified							

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 3. Compressor room and fuel gas system

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
Leak from compressor room piping/flange	1. Mechanical damage	Loss of containment; fire hazard	Emergency shutdown valve at loading manifold	AST	3	1	3	20. Review need to perform and fire explosion analysis to understand
piping/nange			1	3	effect on the adjacent area in case of a gas			
		provided from compre- room					leak in compressor room and provide	
			Two means of escape routes provided from compressor					adequate safeguards as
								applicable.
			5. Active fire protection					
			6. Welded connections, where applicable					
			7. Ventilation inlets are explosion proof					
			8. Hazardous area classification					
2. Leak from fuel gas	1. Mechanical damage	1. Fire hazards	Emergency shutdown valve will be provided, as required		3	1	3	

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 3. Compressor room and fuel gas system

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
			Fuel gas piping through accommodation or enclosed space will be of double wall arrangement	PER	3	1	3	
			3. Ventilation inlets for engine room provided with gas detectors with ESD activation					
			4. Two means of escape routes provided from engine room					
			5. Gas detectors					
			6. Engine room cameras					
			7. Active fire protection					
			8. Hazardous area classification					
			9. Welded connections, where applicable					

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 3. Compressor room and fuel gas system

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
3. Pressure deviations	1. Process upsets	Potential overpressure and damage; fire hazards	Adequate pressure relief valves are provided as needed	AST	3	1	3	
			Thermal relief valve will be provided for all isolated sections	PER	3	1	3	
			3. Emergency shutdown valve provided to isolated process sections during overpressure scenarios					
4. Temperature deviations	1. Process upsets	Potential high temperature gas	Cargo cylinders are provided with high high temperature	AST	3	1	3	21. Review emergency shutdown philosophy
ueviations		due to compression which can affect cargo cylinder structural integrity	shutdown to prevent cylinder structural damage due to high temperature of gas content	PER	1	1	1	for the ship in regard to IGC and IGF code and update as required.
5. Flow deviations	1. Process upsets	If all cylinders are not available to	Cargo cylinders are provided with high high temperature	AST	3	1	3	21. Review emergency
		receive the flow rate coming from	with high high temperature shutdown to prevent cylinder structural damage	PER	1	1	1	shutdown philosophy for the ship in regard to

ABS Hellenic Ltd. WP No. 8 Deliv

Deliverable No. 8.1

Page | 60

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 3. Compressor room and fuel gas system

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
		compressor, it can lead to temperature increase in other cylinders which can affect cylinder structural integrity	due to high temperature of gas content					IGC and IGF code and update as required.
6. Level deviations	Separator drain left open after draining	Potential for gas blow-by via		AST	3	1	3	22. Review compressor inlet separator drain
	operation	separator drain; potential fire hazards		PER	3	1	3	arrangement and ensure it is routed to safe location. If drain valve is left open inadvertently it can lead to gas blow-by resulting in a fire/explosion.
	2. High level in	· ·	Compressor package is	AST	3	1	3	
	compressor inlet separator	carryover to compressor and potential damage to compressor; loss of	provided with all adequate safety measures are required	PER	3	1	3	

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 3. Compressor room and fuel gas system

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
		containment; fire hazards						
7. Corrosion/erosion	1. High flow rate	Potential erosion damage to piping	Piping are designed to handle maximum	AST	2	1	2	
		damage to piping		PER	1	1	1	
8. Startup/shutdown	No issues of concern identified							
9. Simultaneous operations	No issues of concern identified							
10. Moisture	No additional hazards identified							
11. H₂S concentrations	1. Off spec gas	equipment and H₂S	1. H₂S is not expected in inlet stream	AST	3	1	3	
		exposure hazards	2. Ship will not receive gas if H ₂ S is present in the inlet stream	PER	3	1	3	

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 3. Compressor room and fuel gas system

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
			3. Gas will be tested before loading					
12. CO ₂	No issues of concern identified							
13. Drains	No additional hazards identified							
14. Accommodation fire	Compressor room leak	Potential fire/explosion in	1. Active fire protection	AST	3	1	3	20. Review need to perform and fire explosion
ille	leak	compressor might affect accommodation area; personnel injury/fatality		PER	3	1	3	analysis to understand effect on the adjacent area in case of a gas leak in compressor room and provide adequate safeguards as applicable.
15. Explosive hazard	No additional hazards identified							

Page | 64

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 3. Compressor room and fuel gas system

	Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
16.	Flaring/venting during normal operations	No additional hazards identified							
17.	Flaring/venting	1. Venting scenario	_	1. Vent mast is provided with	AST	3	1	3	23. Perform gas dispersion
	during emergency		through vent mast; potential fire hazards if ignition source is found	required height as per the class requirements	PER	3	1	3	analysis to optimized vent mast location and height to ensure gas release from vent mast will not lead to migration of gas to hazardous zone or accommodation area which can result in a fire hazard.
18.	High winds - Typhoons	No issues of concern identified							
19.	Confined spaces	No issues of concern identified	1.						

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 3. Compressor room and fuel gas system

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
20. Machinery instrument accessibility	No issues of concern identified	1.						
21. Reduced visibility	No issues of concern identified	1.						
22. Lightning	No issues of concern identified	1.						
23. Dropped object	No issues of concern identified	1.	No cranes around compressor room that can lead to dropped object incident					
24. Escape/egress/resoue	1. No issues of concern identified	1.	Two means of escape is provided from compressor room					
25. Release from vent	No additional hazards identified							

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 4. Gas combustion unit

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
1. GCU was not analyzed during meeting as requirements are not finalized and if installed, review will be updated accordingly	1.	1.						

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 5. Nitrogen system

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
Leak from piping/flange	Mechanical damage; corrosion; weld	Lost/inability to maintain inert	1. 2x100% Nitrogen generators	AST	3	1	3	24. Consider providing multiple N2 header
pipilig/lialige	defects	atmosphere in cargo hold; potential fire hazard in cargo hold area during leak scenario if ignition source present	presence of O2 in N2 system	PER	3	1	3	such that single failure in the line cannot lead to complete loss of N2 supply to cargo holds. Loss of inert atmosphere in a cargo hold can lead to potential fire hazard if ignition source is present during leak.
2. Pressure deviations	No issue of concern identified							
3. Temperature deviations	No issue of concern identified							
4. Flow deviations	No issue of concern identified							
5. Level deviations	No issue of concern identified							

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 5. Nitrogen system

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
6. Corrosion/erosion	No issue of concern identified							
7. Startup/shutdown	1. Purging operation	Potential ineffective purging operation; fire hazard		PER	4	1	4	25. Review nitrogen system arrangement for purging operation to ensure cylinders can be effectively and safely made gas free for maintenance purpose. Currently only one inlet port is shown for CNG cylinders and it will be difficult to inert the cylinder completely if separate outlet port is not provided. Ineffective purging can lead to fire hazard.
8. Simultaneous operations	No issues of concern identified							

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 5. Nitrogen system

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
9. Moisture	No issues of concern identified							
10. H2S concentrations	1. Not applicable							
11. CO2	1. Not applicable							
12. Drains	No issues of concern identified							

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 6. Main engine and engine room

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
Fire in the engine room	Potential escalation to cargo area	Potential escalation of fire events	Cargo containment is separated by cofferdam	AST	З	1	3	
			 Emergency shutdown and associated operation of fuel gas lines is as per IGC code requirements 	PER	ω	1	3	
			3. Main engine and associated systems are designed as per IGC code requirements					

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 7. Ship interface and marine systems

Hazards	Causes	Consequences	Effective Safeguards	CAT	S	L	RR	Recommendations
Loss of containment in cargo area or compressor room	1. Gas ingress into accommodation area	 Potential fire hazard in accommodation area 	Accommodation ventilation are provided with gas detectors with automatic damper closing on gas detection	AST	3	1	3	26. Consider making life raft area open to avoid any gas pockets during gas release scenario. Gas accumulation in life raft can lead to fire hazard and inaccessibility to life raft during evacuation.
			 Accommodation ventilation inlets are located far away from cargo area and in opposite direction Coffer dam between accommodation (up to wheelhouse deck) and cargo area Life rafts are protected by cofferdam 		4	1	4	27. Consider increasing cofferdam till wheel house to protect wheel house from fire incident in compressor room. Also, ensure cofferdam height increase till wheel house is in compliance with class requirement for

Documentation providing safeguards solutions for the system as identified in the HAZID analysis

Node: 7. Ship interface and marine systems

	Recommendations
5.7 m lock With gus detectors	visibility from wheel house.